If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-28x+46=0
a = 4; b = -28; c = +46;
Δ = b2-4ac
Δ = -282-4·4·46
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-4\sqrt{3}}{2*4}=\frac{28-4\sqrt{3}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+4\sqrt{3}}{2*4}=\frac{28+4\sqrt{3}}{8} $
| 12.84/2.14=a | | 1+4p=3+2p | | 5÷p=75 | | r-16=51/2 | | (1/3)^3x2=128x | | 5x+7=5x−5 | | 5/2=-2x-(2x-4)-1/2 | | 3/4f=21/2 | | 3a+12=a-2 | | 3x+5(x−4)−4=60 | | 5n+6=3n-4 | | -x/2+10=8 | | 14.2=6.34+c | | 12+y=50.73 | | 5x+2=10+6x | | 0.5^x=0.15 | | 8p-9=63 | | -4-4x=x+1 | | 8y+8y=64 | | 2(4-6v)=10v-234 | | 5y+18=8 | | 5x−2(x−2)=−4+5x−2 | | -1-(-x-1/2)=4+1/2(-9x+2) | | 8y+8y=62 | | -9(w+31)=81 | | 22=m/6+4 | | 3.6=9.0r | | H-84x2=5 | | 14+8b=5b-1 | | 10+8w=118 | | -4m-18=32 | | 55+15x=10+20x |